티스토리 뷰

최근에 R에서 sum(a*b)를 해야 하는 상황에 직면했다. 문제는 a와 b가 매우 크거나 작은 수라는 것!

Recently, I came across the situation in which I had to sum(a*b) in R. The problem was that a and b are vectors of very large or small numbers.


다음의 R implementation은 log a b = log c b/log c a라는 것을 안다면 쉽게 이해할 수 있을 것이다.

The implementation of log-sum-exp below must be easily understandable if you know  log a b = log c b/log c a


# log-sum-exp trick


# calculating sum(a*b) using log-sum-exp trick


# Case 1

a = runif(1000000, 1e+220, 1e+276)

b = runif(1000000, 1e+40, 1e+44)


# Case 2

#a = runif(1000000, 1e-200, 1e-180)

#b = runif(1000000, 1e-200, 1e-180)


sum(a*b)


log.a = log(a)

log.b = log(b)


sum.log.ab = log.a + log.b


max.log = max(sum.log.ab)


result.log  = log(sum(exp(sum.log.ab - max.log))) + max.log


# log_10 X = log_10 e * log_e x


result.log10 = log10(exp(1))*result.log


paste(10^(result.log10 - floor(result.log10)), "*10^",floor(result.log10), sep="")


# compare with the result above

sum((a/10000000000)*(b/10000000000))

#sum((a*100000000000000000000)*(b*100000000000000000000)) for case 2


#log.sum.exp:

#input a, b on log-scale

# output sum(a*b) on log-scale


log.sum.exp=function(a.log, b.log) {

    stopifnot(is.vector(a.log) & is.vector(b.log))

    stopifnot(is.numeric(a.log) & is.numeric(b.log))

    sum.log.ab = a.log + b.log


    max.log = max(sum.log.ab)


    log(sum(exp(sum.log.ab - max.log))) + max.log

}


#log10.sum.exp : same with log.sum.exp except for that the base is 10 instead of e

log10.sum.exp=function(a.log, b.log) {

    stopifnot(is.vector(a.log) & is.vector(b.log))

    stopifnot(is.numeric(a.log) & is.numeric(b.log))

    sum.log.ab = a.log + b.log


    max.log = max(sum.log.ab)


    log10(sum(10^(sum.log.ab - max.log))) + max.log

}


log.sum.exp(log(a), log(b))


log10.sum.exp(log10(a), log10(b))


'차기작 : R을 배우자' 카테고리의 다른 글

Dealing with multidimensional array  (0) 2015.11.10
8 dimensions  (0) 2015.11.02
log-sum-exp trick  (0) 2015.10.15
Against underflow  (0) 2015.10.10
fitting data to gpcm(ltm or mirt?)  (0) 2015.09.26
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
글 보관함